
A New Adaptive Density Estimator for Particle-Tracing Radiosity 

Wong Kam Wah 
Department of Computer Science and Information Systems 

The University of Hong Kong 
Pokfulam Road, Hong Kong 

kwwong @csis.hku.hk 

Abstract 

In particle-tracing radiosity algorithms, energy-carrying 
particles are traced through an environment for simulating 
global illumination. Illumination on a surface is recon- 
structed from particle “hit points” on the surface, which 
is a density estimation problem [ I l l .  Several methods can 
be used to solve this problem, such as the adaptive mesh- 
ing method [14], the kernel method [Is], and the orthog- 
onal series estimator [3].  In this paper; a new orthogonal 
series estimator is proposed to tackle the problem. In the 
new method, the appropriate number of terms that should 
be used in the series is determined adaptively and automat- 
ically. Moreover; a surface subdivision scheme is combined 
with the estimator to increase the accuracy of estimation. 
The new method has several advantages over other exist- 
ing methods: ( I )  it requires less memory than the adaptive 
meshing method; (2)  it does not store all the particle-hit 
points as in the kernel method; (3)  it determines automat- 
ically how many terms should be used in the orthogonal 
series; (4) it incorporates surface subdivision to further in- 
crease the accuracy of estimation. 

1. Introduction 

The global illumination problem can be solved by using 
the particle-tracing radiosity method [9]. Energy-carrying 
particles are emitted from each light source, traced through 
the environment, hit and reflected from surfaces until they 
are absorbed probabilistically. Illumination on a surface can 
be estimated from the density of all particle-hit points on the 
surface. 

The particle-tracing radiosity method has several advan- 
tages over the classical hierarchical radiosity method [5]. 
Most complex optical effects, such as non-uniform lumi- 
naries, light scattered from a non-diffuse surface, and re- 
fraction, can easily be simulated [9]. The huge memory re- 
quirement for storing the “links” in the classical hierarchical 

radiosity method can also be avoided [ 121. Moreover, since 
particles interact with the raw input geometry only, the par- 
ticle tracing stage and surfaces’ illumination estimation are 
independent of each other. As a result, the error in the sur- 
faces’ illumination estimation is not propagated [ 10, 151. 

The illumination on a surface is proportional to the den- 
sity of the particle-hit points on the surface. Regions with 
more particle-hits should have brighter illumination. Heck- 
bert [7] first noted that reconstructing illumination from 
particle-hits is a density estimation problem [ 1 13. Several 
techniques are given in the statistics literature for solving 
the density estimation problem [ 111. Some of these tech- 
niques have already been applied by computer graphics re- 
searchers; for example, the histogram method [7, 141, the 
kernel method [ I ,  151, and the orthogonal series estima- 
tor [3]. 

The new method proposed in this paper belongs to the 
class of the orthogonal series estimator. The main contri- 
bution of the new method is that the appropriate number of 
terms that should be used in the orthogonal series is deter- 
mined adaptively and automatically by the algorithm. Fur- 
thermore, in order to avoid using an overly large number of 
terms, an adaptive surface subdivision scheme is incorpo- 
rated in the new method. 

The remainder of this paper is organized as follows: in 
section 2 some typical methods for solving the density esti- 
mation problem are reviewed, and computer graphics algo- 
rithms that utilize these methods are described. In section 3 
a new density estimation method is presented. Its imple- 
mentation and experiment results are given in section 4. Fi- 
nally the conclusion is drawn in section 5. 

2. Density estimation 

The density estimation problem can be stated as follow: 
derive a density function f(z) that approximates an un- 
known probability density function f ( E )  from which inde- 
pendent samples X I ,  X z ,  . . . , x, are drawn. Researchers 
in computer graphics community [7, 101 have realized that 
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Figure 1. The histogram estimator and the kernel estimator (using Gaussian kernel) for the samples 
{ 2,2.3,2.5,3,4,4.3,5.8,6.6,8,8.1}. 

in a particle-tracing radiosity method the illumination re- 
construction process is a density estimation problem. The 
particles-hit points are the sample points {Xi}, and the il- 
lumination function is a scaled probability density function 
f(z). In this section, some of the commonly used tech- 
niques for solving the density estimation problem and im- 
plementations of these techniques in computer graphics ap- 
plications are reviewed. 

2.1. Histogram 

Histogram is the oldest and most widely used density 
estimator. Suppose that the domain [a, b] of a variable z is 
divided into sub-intervals [a+mh, a+ (m+l)h),  each with 
width h. Let n denote the number of samples drawn from 
[a, b] .  The histogram estimator is defined by 

n 1  
f(z) = - * (no. of 

nh 
in the same bin of z) 

i=l  

Figure 1 shows an example of the histogram estima- 
tor. The “meshing” technique in computer graphics can be 
viewed as an implementation of the histogram method: the 
approximate illumination of a patch is proportional to the 
number of particle-hits on the patch. More sophisticated 
“adaptive meshing” approaches, such as the one in [ 141 can 
also be viewed as a variation of the histogram method. In 
that case it allows sub-intervals to have different widths, and 
the number of sub-intervals is increased adaptively. 

2.2. Kernel estimator 

A problem with the histogram approach is that the re- 
sulting estimation is a piecewise constant function. In or- 
der to obtain a smooth estimation, a kernel estimator can be 
used. Let K ( z )  be a kernel function satisfying the condi- 
tion JK(z)dz  = 1. The scaled kernel Kh(z) with kernel 

width h is defined as Kh(z)  = 
function is defined as 

* K (  I) and the estimated 

We can think that, for each sample point X i ,  a kernel is 
placed centered at the sample point. The estimated function 
is the sum of these n kernels. There are different choices for 
the kernel function, and figure 1 shows an example of the 
kernel estimator using a commonly used kernel, the Gaus- 
sian kernel, defined as K ( z )  = &e+. Note that the 
choice of h affects the resulting estimation, and choosing a 
suitable h is not an easy task [lo]. The kernel width should 
be narrow enough to capture the details in density distri- 
bution, and should be wide enough to avoid spurious fine 
structures. Walter et a1 [ 151 gives a particle-tracing radiosity 
algorithm that uses a kernel estimator to reconstruct surface 
illumination. 

2.3. Orthogonal series estimator 

The kernel method needs to store all the samples for eval- 
uating f(z). When a large sample size is involved, the stor- 
age requirement will be very high. For this reason, Shirley 
et a1 [ 101 proposed to store the particle-hits on a disk. An- 
other disadvantage of the kernel method is that an estimate 
of the illumination can be obtained only when all particle- 
hits are captured. If a current estimation is required during 
the solution process, the orthogonal series estimator is pre- 
ferred [4]. 

Let { q&, i 2 0} be a complete set of orthonormal basis 
functions on an interval I .  Suppose that density function 
f(z) is represented by: 

00 
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Figure 2. Inappropriate chosen of m. From left to right: all surfaces use one single term, 45 terms, 
and the number of terms determined adaptively. The same amount of particles (lo4) are traced in the 
three pictures. 

where ai = SI f (z)$i(z)dz .  An orthogonal estimator is 
then given by: 

m 

i = O  

where i L L  is an estimation of ai. Since {Xi} is drawn from 
the probability density function f, 

Note that only a finite number of terms (m in equa- 
tion ( I ) )  are used in the estimation. An advantage of this 
estimator is that m is usually much smaller than the sam- 
ple size n. Therefore, unlike the kernel estimator method, it  
only has to store on each surface a small number of coeffi- 
cient {ui : i = 0 , .  . . , m},  instead of storing all particle-hit 
points. 

Feda [ 3 ]  gives a particle-tracing radiosity algorithm 
based on this orthogonal series method. In his algorithm, 
the parameter m is specified by the user. Just like decid- 
ing how to subdivide a surface in the histogram method 
or choosing an appropriate width h in the kernel method, 
choosing an appropriate value of m for each surface is not 
an easy task. Moreover, when illumination discontinuity 
exists on a surfaces, the orthogonal series estimator cannot 
give a good result without surface subdivision. These are 
the two main problems to be addressed by the new method. 

3. The new method 

3.1. Overview 

The new method is an extension of Feda’s algorithm 
in [3]. Two modifications are added to the orthogonal series 

estimator. First, the new method determines automatically 
for each surface the appropriate number of terms that should 
be used in the orthogonal series. Second, when illumina- 
tion discontinuity entails an unacceptably large number of 
terms, the new algorithm subdivides the surface adaptively 
to better capture the illumination discontinuity. Hence the 
new method combines in a natural manner the advantage of 
orthogonal series estimator for modeling smooth variation 
of illumination and that of adaptive subdivision for model- 
ing illumination discontinuity. 

Legendre polynomials are chosen as the orthogonal ba- 
sis functions due to the following reason: Fourier series and 
Legendre series are two common choices in the orthogo- 
nal series estimator for a finite domain. However, Hall [4] 
points out that Fourier series has the problem of “edge ef -  
fects”, referring large bias towards the endpoints of the do- 
main. Legendre polynomials do not suffer from this defi- 
ciency. His paper concludes that Legendre series is better 
than Fourier series in the density estimator method. Ap- 
pendix A gives the equations of one-dimensional and two- 
dimensional Legendre basis functions. Note that the new 
method is independent of the choice of basis functions, and 
other basis functions can also be used. However, i t  is worth- 
while to study the influence of different basis functions on 
the method, but that is out of the scope of this paper. 

3.2. Automatic determination of m 

For each surface, the number of terms m used in the se- 
ries should be chosen carefully. Previous studies [8, 6, 21 
show that for a small sample size, setting m too high will 
result in too many oscillations in the estimated function. 
For a large sample size, or for surfaces with high gradient 
changes, setting m too small will result in over-smoothing 
of the estimation. Figure 2 shows the result of inappropri- 
ately chosen m. In the left image all surfaces use the first 
term in series (i.e. the constant term) only, and the shad- 
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H ( m )  I 13555.4 13555.0 13554.7 15004.6 15004.3 16452.3 16451.9 16451.6 16451.3 16450.9 

Figure 3. A simple scene in which the Kronmal-Tarter “stopping rule” does not work. Top (from left 
to right): front view, top view, analytical solution of the receiver’s illumination. Bottom: the function 
H ( m )  of the receiver. 

ing becomes too flat. In the middle image all surfaces use 
45 terms. For those surfaces with fewer particle-hits, there 
are too many terms in the series and oscillations of higher 
degree polynomials in the basis functions cause visual arti- 
facts. 

Kronmal and Tarter [8] propose a method to choose the 
number m for Fourier series estimator automatically. They 
start with the integrated-mean-square error (IMSE) of the 
estimation 

I M S E  = J ( m ) =  E[fm(z)- f(z)]’dz JI 
and show that 

m 00 

J(m) = Vur(&) + a: 
i=O i=m+l 

The formula can be further expanded as 

. m  00 

where di = cy=, 4 i 2 ( X j ) .  Details of the expansion 
of ( 2 )  can be found in [8,2].  The aim is to choose a number 
m for each surface which minimize J(m),  or equivalent, 
maximize the function 

m 

H ( m )  = c [ (n + 1);: - 2di ] 
i=O 

as the second term on right hand side of ( 2 )  is independent 
of m. The Kronmal-Tarter method starts at m = 0 and in- 
creases m one-by-one until H ( m  + 1) < H ( m ) .  However, 
this simple term-by-term “stopping rule” does not always 
give a good choice of m because the function H ( m )  may 

have multiple peaks. The simple example shown in figure 3 
illustrates the problem. A light source is placed right over 
the center of the receiver. Since the illumination is sym- 
metric on the receiver, there is no linear variation over the 
entire surface. So including the linear terms (m = 1,2)  in 
the series will not reduce J(m).  However, including later 
terms in the series (e.g. the quadratic terms when m = 5) 
will reduce the error J(m).  

Hart [6] studied the problem of Kronmal-Tarter method 
and proposed an improvement of it. He considers all m 5 
M (where M is a global user-defined constant) and chooses 
the number m that maximizes H ( m ) .  This method is prac- 
tical only when M is small enough for computation. We 
have implemented his method, using M = 45, and found 
that it gives a good result in the radiosity application. It 
is because in a typical radiosity application, most surfaces 
need a fewer terms only, so M needs not to be large. It is 
found that the value of M may not be sufficient large only 
when illumination discontinuities exist on a surface. But 
this case is dealt with by the adaptive subdivision scheme in 
the new method. 

3.3. Adaptive surface subdivision 

When illumination discontinuity exists on a relatively 
large surface, the estimated function based on orthogonal 
series alone cannot fit the illumination function very well 
unless an impractically large number of terms are used. 
Figure 4 shows two simple scenes to illustrate this situa- 
tion. The images show that even though 45 terms are used, 
the illumination still fails to produce a good approximation. 
Moreover, in the region with low gradient the visual artifact 
is even worse. That is because using too many number of 
terms in the series results in noticeable oscillations inherent 
to high order terms. 
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Figure 4. Results without surface subdivision. From left to right: 
the front view, top view, analytical solution, and adaptive orthog- 
onal function approximation. In both cases m = M is reached. 

Figure 5. The result of the new 
estimator with surface subdivi- 
sion. 

To overcome this problem, a surface subdivision scheme 
is added to the estimator. When an appropriate number of 
terms determined by the algorithm reaches a pre-defined 
value &I*, the algorithm subdivides the surface. Note that 
M* can be any value less than or equals to AI mentioned 
in the previous subsection. After subdivision, each sub- 
surface will have its own density estimation function, and 
the late-coming particles hit on the surface will be captured 
by a sub-surface. We avoid to “push” the coarse estimate 
at the parent’s level to the children’s level, because any 
naive “push” will introduce error. Instead, the parent sur- 
face keeps the coarse estimate, and this estimated function 
will be superimposed to the children’s illumination estima- 
tion at the rendering stage. 

There is one problem if surface subdivision is added to 
the estimator: the estimated functions of the sub-surfaces 
may not be guaranteed to be consistent along subdivision 
boundaries. As a result, visual artifacts will appear in the 
final image. An interpolation technique is used to alleviate 
the problem: at a region close to the subdivision boundary, 
the estimated functions of the sub-surfaces will be interpo- 
lated by a blending function. Figure 6 illustrates the process 
in 1D. Note that interpolation is applied only at the image- 
rendering stage as a tools to remove visual artifact. It will 
not have any effect on the density estimator. Figure 5 shows 
the results of the new estimator with surface subdivision. 

3.4. Comparison with Tobler et a1 [14] approach 

Tobler et al [ 141 give an adaptive meshing algorithm for 
the particle-tracing radiosity method. Their algorithm al- 
lows the surface to have higher order illumination function 
terms rather than constant ones. Despite the resemblance of 

the new method to their method, these two methods have 
the following differences: 

In their method the number of terms used for each 
surface is specified by the user, whereas in the new 
method it  is determined automatically. This makes the 
new method more practical for complex scenes. 

Their method focuses on adaptive meshing. At each 
level (the “current level”), the algorithm uses a “pre- 
view level” to keep track of particle-hits in  a finer sur- 
face resolution. By comparing the illumination func- 
tion of the “preview level” and the “current level”, the 
algorithm decides whether the surface should be subdi- 
vided or not. In contrast, the new method emphasizes 
on determining the suitable number of terms used in 
the series for each surface. Thus no “preview level” is 
necessary, and a surface is subdivided only when the 
number of terms determined is larger than acceptable. 

0 In their method, after a surface is subdivided, the sub- 
surfaces use the same number of terms in the series as 
their parent surface. In the new method, the number of 
terms used by each of the sub-surfaces may differ, and 
is adaptively determined. This is a proper treatment, 
because when a surface is subdivided, the sub-surfaces 
will tend to have smoother illumination than their par- 
ent; consequently, they should use a smaller number of 
terms than their parent. 

4. Implementation and results 

Four different methods have been implemented for com- 
parison purpose: ( I )  AM-C:  Tobler et a1 [ 141 adaptive mesh- 
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# I  
subsurface 1 I subsurface 2 

Figure 6. The interpolation of two functions near a subdivision boundary. Left: the two estimated 
functions are discontinuous across the subdivision boundary. Right: zoom view of the rectangular 
region in the left image. A blending function is used to interpolation the two functions in the region 
with distance 5 d from the boundary (d is a pre-defined constant). 

ing method with constant illumination; (2) AM-H: same as 
(l) ,  but with higher order function on each surface (the 
number of terms m is defined by the user); (3) FOSE: 
Feda [3] orthogonal series estimator with a user defined m 
and without surface subdivision; (4) NEW: the new method. 
These methods are applied to the Cornell-box scene, and the 
running time, memory used, and L2 error (IMSE) of two 
surfaces, against the number of particles traced are plotted. 
The surfaces chosen for error analysis are the floor, which 
has large variation in illumination, and the right red wall, 
which has smooth illumination variation. For the methods 
AM-H and FOSE 45 terms for the floor and 15 terms for 
the red wall are used. A reference solution is generated by 
shooting lo8 particles to the scene, where each surface has 
a texture of size 200x 200 to capture particle hits. 

The results are shown in figures 7 and 8. A sequence 
of images are generated, as shown in figure 13 in the color 
page, by increasing the number of particles traced. The im- 
ages and the statistics results show that: 

error: the FOSE method gives the largest error. The 
error will be bounded from below by some value and 
cannot be improved anymore if surface subdivision is 
not used, as the degree is limited. Adaptive meshing 
methods (AM-C and AM-H) produce smaller error due 
to surface subdivision, but AM-C uses lot of memory 
to store the meshes structure in order to achieve this 
small error level. The AM-H method avoids the stor- 
age problem, but that the user has to choose a suitable 
m for each surface makes this method impractical for 
complex scenes. The new method generates smaller 
error than the other three methods (if we ignore the 
case when there are too few particles traced, e.g. less 
than lOOOO), and it does not require the user to specify 
the number m for each surface. 

running time: as shown in figure 8, the AM-H method 
takes the longest time to trace the same number of par- 

ticles. That is because for every particle-hit the method 
has to evaluate a high order illumination function for 
both the “preview level” and the “current level”. The 
new method takes longer time than AM-C and FOSE 
because it has to evaluate the function H ( m )  for all 
m 5 M ,  in return for a more accurate illumination 
estimation. 

In summary, to achieve the same error level, the new method 
requires to shoot fewer particles and runs faster. Figure 9 
plots the L2 error against the running time used in the four 
methods. These graphs show the superiority of the new 
method. 

Figure 11 shows a synthesized image of the graphics lab- 
oratory at the University of Hong Kong generated by the 
new method. The model contains 16000 triangles. In total 
lo7 particles are shot from the light sources. Each particle 
is traced through the scene until it is absorbed probabilisti- 
cally, or a maximum of 10 rebounds is reached. The com- 
putation takes 5.5 hours on a SGI MIPS RIO000 195MHZ 
processor, with 512MB main memory. The new method 
is more suitable than the other three methods for complex 
scenes, because it uses less memory, produces a better ren- 
dering quality, and there is no need to specify the parameter 
m for each surface. 

5. Conclusions 

A new method is proposed for estimating the illumina- 
tion of a surface in particle-tracing radiosity applications. 
The method adds two modifications to the standard orthog- 
onal series estimator. This makes the orthogonal series es- 
timator more practical for the radiosity problem. First, the 
method determines adaptively and automatically the appro- 
priate number of terms should be used in the series for each 
surface. Second, when illumination discontinuity exists on 
a surface, this method subdivides the surface to improve ac- 
curacy. As a result, to achieve the same error level, the new 
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Figure 7. The L2 error of the methods. 

Figure 8. CPU time and memory used by dif- 
ferent methods. 
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Figure 9. L2 error against running time. 

method uses less memory, requires fewer particles, and runs 
faster. 

There is still lot of work to be done with this method. 
One major problem of the particle-tracing radiosity method 
is that tiny surfaces may not get enough particle-hits even 
though a large number of particles have been traced. The 
chairs in figure 11 shows the problem. One way to solve 
it is to trace more particles, as shown in figure 12, but 
this method increases the computational cost as well. A 
more sophisticated method has to be developed to solve this 
problem. Moreover, a better method has to be developed 
to rectify the inconsistent shading value across subdivision 
boundaries. Lastly, there are many kinds of orthogonal ba- 
sis functions, either polynomial or non-polynomial. Differ- 
ent sets of basis functions have different properties. It is 
worthwhile to study other orthogonal series to see if any 
one is the most suitable for the particle-tracing radiosity ap- 
plications. 

A. Legendre polynomials 

The one-dimensional Legendre polynomials are gener- 
ated by the following recursive formula [ 131: 
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The normalized Legendre polynomials are 

P,*(z) = n + - Pn(z) . J :  
A two-dimensional basis set {Qi(z, y)} can be generated 
by multiplying two one-dimensional polynomials in differ- 
ent variables [ 131. Therefore, the first 6 terms in the 2D 
Legendre basis set are: 

QO(Z,Y) = f',*(z)P,*(~) 
Q i ( z , ~ )  = P;(~P,*(Y) 
Q ~ ( z , Y )  = p,*(z)P;(y) 

Q ~ ( % , Y )  = P~*(~)P,*(Y) 
Q ~ ( z , Y )  = P;(~)P;(Y) 
Q S ( Z , Y Y )  = PO'(~)P,*(Y) 

[7] P. S. Heckbert. Adaptive radiosity textures for bidirectional 
ray tracing. In Computer Graphics (SIGGRAPH '90 Pro- 
ceedings), volume 24, pages 145-154, Aug. 1990. 

[8] R. A. Kronmal and M. E. Tarter. The estimation of proba- 
bility densities and cumulatives by fourier series methods. 
Joumal of American Statistical Association, 63:925-952, 
1968. 

[9] S. N. Pattanaik and S. P. Mudur. Computation of global 
illumination by monte carlo simulation of the particle model 
of light. Third Eurographics Workshop on Rendering, pages 
71-83, May 1992. 

[IO] P. Shirley, B. Wade, P. Hubbard, D. Zareski, B. Walter, and 
D. P. Greenberg. Global illumination via density estimation. 
In Eurographics Rendering Workshop 1995, June 1995. 

and so on. ~i~~~~ 10 shows the 3D plotting ofthese 6 terms. [ 1 I ]  B. W. Silverman. Density Estimation for  Statistics and Data 
Analysis. Chapman & Hall, 1986. 

[I21 M. Stamminger, H. Schirmacher, P. Slusallek, and H.-P. Sei- 
! del. Getting nd of links in hierarchical radiosity. Computer 

Graphics Forum, 17(3):165-174, 1998. 
[ 131 P. K. Suetin. Orthogonal polynomials in two variables. Gor- 

don & Breach, 1999. 
[14] R. F. Tobler, A. Wilkie, M. Feda, and W. Purgathofer. A 

hierarchical subdivision algorithm for stochastic radiosity 
methods. In Eurographics Rendering Workshop 1997, pages 
193-204, June 1997. 

[I51 B. Walter, P. M. Hubbard, P. Shirley, and D. F. Greenberg. 
Global illumination using local linear density estimation. 
ACM Transactions on Graphics, 16(3):217-259, July 1997. 

Figure 10. The first six terms of two- 
dimensional Legendre basis functions. 
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Figure 11. A complex scene rendered by the new method. 

Figure 12. The same scene shown in figure 11, with five times number of particles has been traced. 
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Figure 13. Final rendered images. From left to right: AM-C, AM-H, FOSE, NEW. From top to bottom: 
lo3, lo4, lo5, lo6, and lo7 particles are traced. 
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